22 research outputs found

    Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts

    Get PDF
    The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). L. Barros and R. C. Calhelha thank the national funding by the FCT, P.I., through the institutional scientific employment program-contract for their contracts. M. Carocho also thanks the project ValorNatural for his research contract. The authors are also grateful to the FEDER-Interreg España- Portugal programme for financial support through the project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio

    Actions of bisnucleophiles on (E)-3-[3-(2-Hydroxyaryl)-3-oxoprop-1-en-1-yl]chromones: versatile transformations into oxygen-and nitrogen-containing heterocycles

    Get PDF
    The transformations of (E)-3-[3-(2-hydroxyaryl)-3-oxoprop- 1-en-1-yl]chromones in the presence of methylhydrazine and aromatic bisnucleophiles are described. The reactions generally lead to chromone ring transformation via pyrone ring-opening and heterocyclization to give novel diazoles and (Z)-3-aminomethylenechromanones, respectively. Piperazine catalyzes chromanone ring closure of the starting substrate to afford chromone–chromanone dyads

    Synthesis and Ring Transformation of Oxygen and Nitrogen Spiro Bisheterocycles

    Get PDF
    A facile and rapid access to bridgehead oxygen-and nitrogen-containing spiro bisheterocycles is reported. It involves a one-pot spiro-to-spiro ring transformation of the key spiro[chromanone-hydantoin] compounds into new substituted spiro [hydantoin-diazole], spiro [hydantoin-isoxazole], spiro [hydantoin-diazepine], spiro [hydantoinoxazepine], and spiro [hydantoin-benzodiazepine] upon reaction with appropriate bisnucleophilic agents. The hydantoin cycle is preserved during these chemical reactions affording the spiro bisheterocycles in optimal yields (42-71%). This relevant spiro-to-spiro ring transformation was confirmed by NMR and single-crystal X-ray diffraction studies

    Hemi-synthesis of novel (S)-carvone hydrazone from Carum carvi L. essential oils: structural and crystal characterization, targeted bioassays and molecular docking on human protein kinase (CK2) and Epidermal Growth factor Kinase (EGFK)

    Get PDF
    Polyfunctional N,O,O,N-type ligands such as the oxalyl dihydrazide (ODH) may induce formation of mono- , di-, and polynuclear complexes with natural monoterpene ketones, involving ligand bridging and Oxo- bridging. In this context, a novel chiral dihydrazone is designed through hemi-synthesis process by re- acting oxalyldihydrazide (ODH) with ( s )-carvone, the major compound of caraway’s seeds essential oil. The C = N imine bi-condensation is performed without prior isolation of the natural ( s )-carvone and the resulting ( s )-carvone dihydrazone (s-CHD) is structurally characterized by Single-crystal X-ray diffrac- tion, 2D-NMR spectroscopy and chiral LCMS analysis to confirm the formation of a single pure enan- tiomer. In -vitro cell-based assays were conducted on normal fibroblast (L929) using a presBlue (PB) flu- orescence quantification method of cell-viability and by sulforhodamine B calorimetric cytotoxicity as- says to determine the anti-proliferative effect on four human tumoral lines (NCI-H460, Hela, HepG2 and MCF-7) and normal PLP2. Anti-inflammatory assays were determined through NO production by Maurine LPS-stimulated macrophages (RAW 264.7). The ( s )-CHD has no effect on normal cells viability ( > 88%) and PLP2 (GI50 = 326 ug/mL), while a moderate ( ∼55%) to significant ( ∼63%) antigrowth potential was recorded against HepG2, Hela and MCF-7 tumor cell lines, where RAW 264.7 was feebly sensitive. A molecular docking was performed using Autodock vina software on the protein kinase CK2 and Epi- dermal Growth factor Kinase proteins EGFK and the dock scores allowed to identify significant bind- ing affinities (lower G and Ki values) and potential hydrophilic/hydrophobic interactions with ( s )-CHD comparing to the clinical ellipticine as potential ligands. Molecular docking suggests that ( s )-CHD pos- sesses high affinity towards the kinase domain receptors CK2 and EGFR, being able to bind to the ATP region.Thanks are due to the Research Center Scientific and Technical in Analyzes Physico-Chimiques CRAPC Algerian Directorate for research DGRSDT for the financial support. The authors thanks Fundação para a Ciência e a Tecnologia (FC&T, Lisbon) for financial support through projects PTDC/MEC–ONC/29327/2017 and PTDC/EQU-EQU/32473/2017. We are thankful to NOVA University of Lisbon (FCT/UNL) for the financial support from Erasmus + EU international credit mobility 2017–2019. the laboratory for Green Chemistry LAQV-REQUIMTE FCT/MCTES (UID/QUI/50006/2019) is co-financed by the ERDF and the chemistry department for providing the instruments support.info:eu-repo/semantics/publishedVersio

    A One-Pot Diastereoselective Synthesis of 2-[Aryl(hydroxy)methyl]-6-methyl-2H-furo[3,2-c]pyran-3,4-diones: Crystallographic Evidence for the Furanone Ring Closure

    Get PDF
    Novel furopyran-3,4-dione-fused heterocycles have been obtained by a one-pot reaction of -brominated dehydroacetic acid and benzaldehydes under organobase conditions. The prepared 2-[aryl(hydroxy)methyl]-6-methyl-2H-furo[3,2-c]pyran-3,4-diones were fully characterized by 2D NMR spectroscopy and supported by single-crystal X-ray analysis to unequivocally prove the furan-3-one five-membered ring-closure mechanism instead of the dihydroflavanon-3-ol six-membered cyclization which has recently been proposed in the literature

    Metabolomics approaches for early cancer diagnosis: A review

    Get PDF
    Cancer remains a major burden on global public health with high mortality rates worldwide. Current diagnosis can detect cancer in late stages when therapy options become limited. Early diagnosis is broadly recognized as the key to a better treatment to save lives. The metabolomics approach provides a better understanding of the different types of cancer. They offer promising and potential interventions in biomarkers discovery which eventually will be better suited for individualized medicine. It elucidates endpoint products for other omic processes while significantly improving the understanding of pathogenesis and mechanisms yet to be discovered. Metabolomics offers a less-invasive, cost-effective for predicting, screening, diagnosis, prognosis, and monitoring therapeutic responses of the disease. There are two methods to study the metabolism and metabolites: targeted and untargeted. The workflow of these approaches requires different analytical platforms, such as Nuclear Magnetic Resonance spectroscopy (NMR), Mass Spectrometry (MS), and different bioinformatic tools. This review provides a systematic summary of metabolomics methods in identifying metabolic biomarkers of cancers (colorectal, prostate, breast, bladder, pancreas, lung, and buccal cancers). In addition, the current review will try to shed light on DNA lesions as a potential metabolic biomarker for cancer

    1,3-Dicyclo­hexyl­imidazolidine-2,4,5-trione

    Get PDF
    The title compound, C15H22N2O3, has been isolated as a by-product of an oxidative cleavage of the C—C bond linking two five-membered rings of 1,3-dicyclo­hexyl-5-(3-oxo-2,3-dihydro­benzofuran-2-yl)imidazolidine-2,4-dione. Individual mol­ecular units are engaged in weak C=O⋯C=O inter­actions [O⋯C = 2.814 (10) and 2.871 (11) Å], leading to the formation of supra­molecular chains which close pack, mediated by van der Waals contacts, in the bc plane

    Multicomponent and 1,3-dipolar cycloaddition synthesis of triazole- and isoxazole-acridinedione/xanthenedione heterocyclic hybrids: cytotoxic effects on human cancer cells

    Get PDF
    A new series of diverse 1,2,3-triazole-acridinedione/xanthenedione and 1,2-isoxazole-acridinedione/xanthenedione heterocyclic hybrids have been synthesized via 1,3-dipolar coupling reaction of N/O-substituted-acridinedione-alkyne or O-substituted-xanthenedione-alkyne substrates with various aromatic azides or oximes. In all cases, the cycloaddition is totally regioselective. The chemical structures of the synthesized compounds are determined using 2D NMR and are further confirmed by single-crystal X-ray diffraction analysis. Preliminary in vitro cytotoxic assays on two human breast cancer cell lines (MDA-MB-231, T47-D) and one prostate cancer cell line (PC3) are performed on some selected compounds. The most active O-1,2,3-triazole-xanthenedione hybrid displays the best cytotoxicity effects with IC50 ≤ 20 μM in breast cancer and IC50 = 10 μM in prostate cancer cell lines.publishe

    A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+

    Get PDF
    Novel series of triazole-benzimidazole-chalcone hybrid compounds have been synthesized via click chemistry, between different azide derivatives and substituted benzimidazole terminal alkynes bearing a chalcone moiety. The starting alkynes are prepared via base-catalysed nitrogen alkylation of pre-synthetized benzimidazole-chalcone substrates. All the intermediates as well as the final products are fully characterized by 1D and 2D NMR and mass spectrometry techniques. HMBC correlations permits the identification of a unique 1,4-disubstitued triazole-benzimidazole-chalcone isomer. Evaluation of the anti-proliferative potential in breast and prostate cancer cell lines showed that the presence of chloro substituents at the chalcone ring of the triazole-benzimidazole-chalcone skeleton enhanced the cytotoxic effects. The benzyl group linked to the 1,2,3-triazole moiety provides more antiproliferative potential.publishe

    One-Pot Synthesis of Novel Highly Functionalized Furan-Based Polyphenolics

    Get PDF
    Novel, highly functionalized furan-based polyphenolics were prepared. The employed methodology involves a one-pot 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) catalyzed 1,4-conjugate addition of 1,3-dicarbonyl compounds on 3-bromochromones, furan heterocyclization, and chromanone ring opening
    corecore